Spatial Temporal Graph Deconvolutional Network for Skeleton-Based Human Action Recognition
نویسندگان
چکیده
Benefited from the powerful ability of spatial temporal Graph Convolutional Networks (ST-GCNs), skeleton-based human action recognition has gained promising success. However, node interaction through message propagation does not always provide complementary information. Instead, it May even produce destructive noise and thus make learned representations indistinguishable. Inevitably, graph representation would also become over-smoothing especially when multiple GCN layers are stacked. This paper proposes spatial-temporal deconvolutional networks (ST-GDNs), a novel flexible deconvolution technique, to alleviate this issue. At its core, method provides better aggregation by removing embedding redundancy input graphs either node-wise, frame-wise or element-wise at different network layers. Extensive experiments on three current most challenging benchmarks verify that ST-GDN consistently improves performance largely reduce model size these datasets.
منابع مشابه
Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition
Dynamics of human body skeletons convey significant information for human action recognition. Conventional approaches for modeling skeletons usually rely on hand-crafted parts or traversal rules, thus resulting in limited expressive power and difficulties of generalization. In this work, we propose a novel model of dynamic skeletons called SpatialTemporal Graph Convolutional Networks (ST-GCN), ...
متن کاملSpatio-Temporal Graph Convolution for Skeleton Based Action Recognition
Variations of human body skeletons may be considered as dynamic graphs, which are generic data representation for numerous real-world applications. In this paper, we propose a spatio-temporal graph convolution (STGC) approach for assembling the successes of local convolutional filtering and sequence learning ability of autoregressive moving average. To encode dynamic graphs, the constructed mul...
متن کاملHuman action recognition based on graph-embedded spatio-temporal subspace
Human action recognition is an important issue in the pattern recognition field, with applications ranging from remote surveillance to the indexing of commercial video content. However, human actions are characterized by non-linear dynamics and are therefore not easily learned and recognized. Accordingly, this study proposes a silhouette-based human action recognition system in which a threeste...
متن کاملLeveraging the Path Signature for Skeleton-based Human Action Recognition
Human action recognition in videos is one of the most challenging tasks in computer vision. One important issue is how to design discriminative features for representing spatial context and temporal dynamics. Here, we introduce a path signature feature to encode information from intra-frame and inter-frame contexts. A key step towards leveraging this feature is to construct the proper trajector...
متن کاملSkeleton-Based Action Recognition Using Spatio-Temporal LSTM Network with Trust Gates
Skeleton-based human action recognition has attracted a lot of research attention during the past few years. Recent works attempted to utilize recurrent neural networks to model the temporal dependencies between the 3D positional configurations of human body joints for better analysis of human activities in the skeletal data. The proposed work extends this idea to spatial domain as well as temp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Signal Processing Letters
سال: 2021
ISSN: ['1558-2361', '1070-9908']
DOI: https://doi.org/10.1109/lsp.2021.3049691